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Large-scale cancer cell line screens have identified thousands of
protein-coding genes (PCGs) as biomarkers of anticancer drug
response. However, systematic evaluation of long noncoding RNAs
(lncRNAs) as pharmacogenomic biomarkers has so far proven
challenging. Here, we study the contribution of lncRNAs as drug
response predictors beyond spurious associations driven by
correlations with proximal PCGs, tissue lineage, or established
biomarkers. We show that, as a whole, the lncRNA transcriptome is
equally potent as the PCG transcriptome at predicting response
to hundreds of anticancer drugs. Analysis of individual lncRNAs
transcripts associated with drug response reveals nearly half of the
significant associations are in fact attributable to proximal cis-PCGs.
However, adjusting for effects of cis-PCGs revealed significant
lncRNAs that augment drug response predictions for most drugs,
including those with well-established clinical biomarkers. In addi-
tion, we identify lncRNA-specific somatic alterations associated with
drug response by adopting a statistical approach to determine
lncRNAs carrying somatic mutations that undergo positive selection
in cancer cells. Lastly, we experimentally demonstrate that 2
lncRNAs, EGFR-AS1 and MIR205HG, are functionally relevant predic-
tors of anti-epidermal growth factor receptor (EGFR) drug response.

long noncoding RNA | pharmacogenomics | drug response prediction |
machine learning

Long noncoding RNAs (lncRNAs) are transcripts greater than
200 nucleotides in length that do not contain protein-coding

sequences. They act as key regulators of gene expression (1),
controlling a diverse set of transcriptional and posttranscriptional
processes, including chromatin remodeling, RNA splicing and
transport, and protein synthesis (2, 3). Although, less than 1% of
lncRNAs have been functionally characterized (4), a compre-
hensive characterization of lncRNA across thousands of tumors
suggests pervasive dysregulation of the lncRNA transcriptome at
rates similar to protein-coding genes (PCGs) (5, 6). In addition,
some lncRNAs function as either oncogenes or tumor suppres-
sor genes in human cancers (7, 8).
Several large-scale cancer cell line screens systematically in-

vestigated the response to hundreds of drugs to identify genomic
and transcriptomic biomarkers of cancer drug response (9–13).
These studies expanded the repertoire of somatic alterations and
gene expression biomarkers linked with drug response but fo-
cused exclusively on PCGs. Considering less than 2% of the
genome codes for PCGs (14) with nearly 70% of the genome
transcribed into noncoding RNAs (15), it seems that the mech-
anisms of anticancer drug response cannot be explained by PCGs
alone (16). Subsequently, a recent study reported lncRNA
models are better predictors of drug response compared to
PCGs for several drugs (17). However, lncRNAs are expressed
with a high degree of tissue specificity and the expression of
genic lncRNAs tends to be strongly correlated with the expres-
sion of PCGs on complementary strands (15). Therefore, the
identification of novel lncRNA biomarkers associated with an-
ticancer drug response requires careful consideration of the

potential confounding influence of the tissue lineage along PCGs
proximal to the lncRNAs.
Here we report the results of a systematic investigation of the

lncRNA transcriptome and genome of cancer cell lines and
large-scale drug screens to establish a pharmacogenomic land-
scape of lncRNAs. We use regularized regression models to
predict drug response using lncRNA transcriptome to demon-
strate its potency compared to PCGs. To guide the discovery of
individual lncRNA biomarkers, we delineate the effects of cis-
PCGs on drug–lncRNA associations in regression models. In
addition, we identify lncRNA-specific somatic mutations un-
dergoing positive selection in cancer cells and determine their
associations with drug response. We further investigate the
contribution of lncRNAs in predicting the response for drugs
with clinically actionable PCG biomarkers. Based on our analy-
sis, we highlight the role of EGFR-AS1 and MIR205HG as pre-
dictors of anti-epidermal growth factor receptor (EGFR)
therapeutic response independent from EGFR somatic muta-
tions and experimentally confirm their potential as erlotinib-
response biomarkers in lung cancer cells.

Results
Despite the tremendous success of cancer cell line screens in
discovering novel PCG biomarkers of drug response, the contri-
bution of lncRNAs in cancer pharmacogenomics is poorly estab-
lished. To systematically determine the relevance of lncRNAs as
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anticancer drug response biomarkers, we propose the following
framework to delineate their contribution as response predictors
while accounting for the effects of tissue type, proximal cis-PCGs
(within ±500 Kb), and known biomarkers (Fig. 1 A–D and SI
Appendix, Fig. S1 A and B). In addition, we determine the
contribution of somatic alterations specific to lncRNAs in drug
response using a statistical approach to determine positively
selected mutations (Fig. 1E). Finally, we experimentally validate
the functional role of 2 lncRNA predictors of anti-EGFR drug
response (Fig. 1F).

Determining the Contribution of lncRNA Transcriptome as a Predictor
of Anticancer Drug Response.An important finding reported by the
cancer cell line screens was the ability to implement machine-
learning algorithms that accurately predicted drug response us-
ing the baseline PCG transcriptome of cancer cells. Thus, we first
compared the ability of lncRNA transcriptome to predict re-
sponse to 265 and 545 compounds from the Genomics of Drug
Sensitivity in Cancer (GDSC) and Cancer Therapeutics Re-
sponse Portal (CTRP) screens, respectively. In both screens, the
lncRNA transcriptome was equally potent at predicting response

Fig. 1. Framework for lncRNA biomarker discovery. (A) Datasets used in the study, including gene expression (PCG, lncRNA) and drug response profiles
corresponding to Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) cell lines, and noncoding somatic variants
from COSMIC. RNAseq data for PCG and lncRNA transcriptome corresponding to the CTRP cell lines were obtained from the Cancer Cell Line Encyclopedia. For
the GDSC cell lines, the lncRNA transcriptome was imputed using the gCSI RNAseq dataset (see Methods for details). “N” indicates the number of cell lines in
each dataset, while the number of lncRNA, PCGs, or drugs with the area under the curve (AUC) of drug response in each dataset are indicated inside the
colored boxes. (B) Linear model for predicting drug response (AUC) using the PCG or lncRNA transcriptome. (C) Determining significance drug:lncRNA as-
sociations after adjusting for the expression levels of neighboring cis-PCGs within a ±500-Kb window. (D) Identification of significant drug:lncRNA associations
after adjusting for the mutation or copy number variation status of clinically established PCG biomarkers of drug response. (E) A two-step statistical approach
to determine lncRNAs with somatic mutations that undergo positive selection in cancer cell lines. (F) Experimental validation of candidate lncRNAs that
augment clinical biomarkers of drug response.
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to individual drugs as PCGs (CTRP Spearman’s ρ = 0.93; GDSC
Spearman’s ρ = 0.98) (Fig. 2A), with no difference in median
prediction accuracies across all drugs (CTRP P = 0.17; GDSC
P = 0.32) (SI Appendix, Fig. S1C). The drug GSK-J4, a potent
and highly selective inhibitor of H3K27 histone demethylases
JMJD3 and UTX, was an exception that was predicted with
better accuracy using lncRNA transcriptome. For the set of
drugs that were common to both screens, consistent prediction
accuracies were achieved using both lncRNA (P = 0.24) and
PCG models (P = 0.07) (SI Appendix, Fig. S1 D and E). More-
over, no differences were observed in GDSC drug response
prediction accuracies (P = 0.78) when using either measured
Genentech Cell Line Screening Initiative (gCSI) RNAseq or
imputed lncRNA profiles from the subset of cell lines that were
common between GDSC and gCSI (SI Appendix, Fig. S1F).
Next, we modeled drug response as a function of individual

lncRNA transcripts to determine significant biomarkers. Across
the set of drug–lncRNA pairs common to both CTRP and GDSC
screens, 68% of the significant [familywise error rate (FWER) <
0.05] CTRP drug–lncRNA associations were also significant in
GDSC at the nominal threshold (P < 0.05), while about 28%
were significant at the FWER threshold (Fig. 2B). Both anti-
sense and intergenic transcripts were represented in the cohort
of top significant overlapping drug pairs; for example, vorinostat
resistance was associated with the antisense lncRNA AC106786.2
or ruxolitinib sensitivity with the intergenic lncRNA LINC02285
(Fig. 2B). The biotypes of lncRNAs were nearly equally distrib-

uted between genic (including antisense) and intergenic RNAs, while
antisense transcripts were overrepresented in the cohort of significant
(FWER < 0.05) drug–lncRNA pairs as compared to intergenic
transcripts (Tukey’s P < 10−11) (Fig. 2C and Dataset S1).
Next, we evaluated the pharmacogenomic relevance of the

well-characterized lncRNAs that have been implicated as onco-
genes or tumors suppressors in human cancers (18) (Fig. 2D and
SI Appendix, Fig. S1G). For example, the expression of putative
tumor suppressor lncRNA MEG3 was associated with sensitivity
to carboplatin and 5-fluorouracil, while the putative oncogenes
BCAR4 andHOTAIR were associated with resistance to carboplatin
and 5-fluorouracil, respectively (Dataset S2). These observations
are in line with previous in vitro studies that show elevated
MEG3 expression to be associated with sensitivity (19, 20) while
high BCAR4 (21) and HOTAIR (22) expression were linked with
resistance to cytotoxic anticancer agents. Within in the cohort
of significant cancer-associated lncRNAs, we observed the ex-
pression of GAS5 and ZEB2AS1 was associated with the sensi-
tivity of more than 50 drugs (Fig. 2D), suggesting these lncRNAs
could be candidates for further evaluation as multidrug response
predictors. These results suggest the potential of known cancer-
associated lncRNAs to serve as determinants of anticancer drug
response.

Characterizing the Impact of Proximal cis-PCGs on Drug–lncRNA
Associations. The strong correlation between the expression lev-
els of antisense lncRNAs and overlapping PCGs could potentially

A

B C

D

Fig. 2. LncRNAs as predictors and biomarkers of anticancer drug response. (A) Scatterplot of 545 CTRP or 265 GDSC prediction accuracies using PCG tran-
scriptome (X axis) or imputed lncRNA transcriptome (y axis) as predictors. Each point on the scatter plot shows the accuracy of predicting response to a drug by
using models generated using PCG or lncRNA transcriptome. The bolded points are drugs common to both GDSC and CTRP. Gray lines indicate prediction
accuracies with confidence intervals from a null model. (B) Volcano plots of drug–lncRNA associations in the cohort of drug–lncRNA pairs common to CTRP
and GDSC screens displaying effect sizes (X axis) and P values (y axis) of the regression analyses. The light-blue enlarged circles indicate significant (FWER-
adjusted) CTRP drug–lncRNA pairs also significant in GDSC at the nominal threshold, while dark-blue enlarged circles are significant in GDSC at the FWER
threshold. The dark blue labels indicate examples of drugs paired with antisense lncRNAs, and pink labels show intergenic lncRNAs. (C) Distribution of lncRNA
biotypes across all cell lines and within the subset of significant drug–lncRNA pairs (FWER-adjusted) identified from linear regression analysis of the CTRP
screen adjusted for tissue type. (D) Volcano plot displaying effect sizes (X axis) and P values (y axis) of oncogenic and tumor suppressor lncRNAs associated
with drug response after adjusting for cis-PCGs. The bar plots below indicate the frequency of drugs associated with the lncRNAs at the nominal threshold and
FWER-adjusted threshold.
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result in spurious associations with drug response. To decon-
volute the contribution of lncRNAs from the effects of proximal
PCGs, we next analyzed drug response as a function of lncRNA
expression while adjusting for the effects of proximal cis-PCGs
(any PCG located in the −500-Kb region upstream of tran-
scription start site to +500 Kb downstream of transcript end).
Nearly 50% of the remaining significant drug–lncRNA associa-
tions were affected by the expression levels of the cis-PCGs
(Fig. 3A). As expected, adjusting for cis-PCGs mostly affected
the proportion of significant antisense lncRNAs over intergenic
transcripts (Fig. 3A).
Given the obvious influence of proximal PCGs on drug–

lncRNA associations and to better understand the genomewide
distribution of lncRNA biomarkers relative to PCGs, we mapped
the significant lncRNA and PCG biomarker for all drugs ana-
lyzed in the CTRP screen (SI Appendix, Fig. S2 A and B). For
individual drug, we also mapped the top predictive lncRNA or
PCG biomarkers based on their genomic loci (Fig. 3B). Inter-
estingly, we observed that for most drugs, the top lncRNAs and
PCG biomarkers were located on distinct loci. In fact, the top
lncRNA and PCG loci overlapped for only 5% of the drugs
analyzed. As a case in point, we highlight the set of drugs with
established clinically actionable biomarkers (23). For example,
the top PCG markers for gefitinib and crizotinib response were
located on chromosomes 1 while the lncRNAs markers were
located on 14 and 8, respectively. Based on these observations,
we propose that despite the obvious impact of proximal cis-
PCGs, it is possible to discover strong drug–lncRNA associations
by carefully accounting for the effects of cis-PCGs.
As additional examples, we zoom-in to highlight the top

lncRNA associated with veliparib and idelalisib response along
with the proximal cis-PCGs. The intergenic lncRNA AC023669.1
was associated with veliparib response (P = 3.9 × 10−17) after

adjusting for the neighboring PCGs IGFBP1 (P = 0.7) and
IGFBP3 (P = 0.08) (Fig. 3C). The antisense lncRNA AL161781.2
was associated with idelalisib sensitivity (P = 2.9 × 10−20) while
the expression levels of proximal cis-PCGs showed consider-
ably weaker association with the drug (e.g., PAX5 P = 0.002)
(Fig. 3C).

lncRNAs Augment Drug Response Predictions from Known PCGs
Biomarkers. Currently, a small number of PCG mutations and
copy number variations (CNVs) are being used in the clinic as
biomarkers to guide treatment decisions (23). We evaluated if
the top lncRNA biomarkers for such drugs provide any addi-
tional benefit over the clinical biomarkers. We modeled drug
response as a function of lncRNA expression and known PCG
biomarkers and compare the individual and combined contri-
bution of each predictor at explaining the variability in drug
response (Fig. 4A). In the case of BCR-ABL targeting tyrosine
kinase inhibitors (TKIs), like imatinib and nilotinib, the BCR-
ABL1 fusion event was a stronger predictor compared to the top
lncRNA. However, the response to dasatinib, a TKI with several
other targets besides BCR-ABL, was better explained by the
lncRNA. Similarly, BRAF mutations were strong predictors of
response to dabrafenib and trametinib, and ERBB2 mutations/
CNVs for lapatinib sensitivity. In each of these cases, the addi-
tion of the lncRNA biomarker improved the proportion of var-
iance explained by the model compared to the PCG biomarker
alone. Other mutations and CNVs in genes like KIT, PDGFR,
KRAS, ALK, and VHL actually explained a very small proportion
of the variance of the respective drugs and were supplemented
by the addition of lncRNA biomarkers. Interestingly, EGFR
mutations and CNVs, one of the most prominent examples of
cancer pharmacogenomic biomarkers for the EGFR targeting
TKIs, were also augmented by the inclusion of expression of the

Fig. 3. Relevance of cis-PCG adjusted lncRNA biomarkers. (A) Distribution of significant lncRNAs associated with each CTRP drug (X axis). The orange bars
indicate a number of significant lncRNAs for a drug while the magenta bars indicate the number of lncRNAs that are statistically significant after adjusting for
the expression levels of every cis-PCG (within 1 Mb) of the lncRNA transcript. The piechart below shows biotype distribution of the lncRNAs in the cohort of
significant drug–lncRNA pairs adjusted for cis-PCGs. (B) Ideogram of the human chromosomes displaying the top lncRNA and PCG associated with each CTRP
drug. P values of the drug–gene associations are indicated as red bars for lncRNAs above the chromosomes and as blue bars for PCGs below the chromosomes
at their respective locus. The yellow highlighted boxes indicate the cytobands with overlapping top lncRNA and PCG loci associated with a drug. Bolded letters
(red = lncRNA, blue = PCG) indicate signals associated with the set of drugs with clinically actionable biomarkers. (C) Examples of top lncRNA associated with
veliparib and idelalisib response, with black bars indicating adjusted P values for lncRNA and cis-PCGs.
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top lncRNA biomarker. These results provide strong evidence to
support the utility of lncRNA expression as biomarkers for an-
ticancer drugs beyond PCGs.
We further evaluated the top lncRNA predictors of EGFR-

targeting TKI response, as the inclusion of these lncRNAs in the
model resulted in substantial improvement in the proportion of
variability in drug response explained by EGFR mutations or
CNVs alone. Somatic mutations in the EGFR tyrosine kinase
domain, including in-frame deletions in exon 19, single-nucleotide
variations in exon 21 and amplification improve sensitivity, while
an exon 20 (T790M) secondary mutation causes resistance to the
anti-EGFR drugs gefitinib and erlotinib (24–27). However, these
well-defined biomarkers can only explain a small proportion of
the variance in drug response in (Fig. 4A). This observation is
consistent with data from nonsmall cell lung cancer patients,
where the response to anti-EGFR therapy is determined by
EGFR-activating mutations and CNVs in about 10 to 30% of
patients (28). However, about 1 in 4 patients that respond to
gefitinib or erlotinib do not carry these activating alterations
(29). We found 2 lncRNAs, the EGFR antisense RNA 1 (EGFR-
AS1; ENSG00000224057) and the MIR205 host gene (MIR205HG;
ENSG00000230937), as the top 2 candidates biomarkers of anti-

EGFR drug response independent of known PCG biomarkers
(Fig. 4B). The addition of EGFR-AS1 and MIR205HG expres-
sion substantially improved the proportion of variance explained
by the drug response models to 12 to 18% for erlotinib and 25 to
30% for gefitinib when combined with the EGFR functional
events across all cell lines (SI Appendix, Fig. S3A). Without
considering EGFR functional events, both EGFR-AS1 and
MIR205HG expression levels were higher in the cells sensitive to
gefitinib or erlotinib (Fig. 4C and SI Appendix, Fig. S3B). More-
over, the drug–lncRNA associations for EGFR-AS1 (erlotinib P =
1.37 × 10−10; gefitinib P = 2.2 × 10−16) and MIR205HG (erlotinib
P = 2.04 × 10−4; gefitinib P = 2.2 × 10−16) were significant after
adjusting for EGFR mutations and CNVs (SI Appendix, Fig. S3C).
Building on these results, we validated the correlation between

EGFR-AS1 and MIR205HG expression with imputed erlotinib
response in lung adenocarcinoma (LUAD) patients from the
cancer genome atlas (TCGA) project (30). The analysis of im-
puted drug response showed higher expression of both EGFR-
AS1 and MIR205HG were associated with sensitivity to erlotinib
(SI Appendix, Fig. S4 A–D). The significance of correlation be-
tween the lncRNAs and erlotinib response was within the same

Fig. 4. LncRNAs augment clinical drug response biomarkers. (A) Barplots showing the proportion of variance in drug response (R2 of the regression model
adjusted for tissue type) explained by the known PCG biomarker (blue bar), top lncRNA biomarker (red bar), or model combining the two (violet bar). The PCG
biomarkers are listed above each subpanel. (B) Volcano plots showing lncRNAs associated with gefitinib or erlotinib response in the GDSC dataset adjusting
for mutations and copy number variations in the EGFR gene. Each point on the plot represents an lncRNA–drug pair, with red points indicating lncRNAs
common to both erlotinib and gefitinib above the nominal significance threshold of false discovery rate (FDR) < 0.05 (dashed gray line). (C) Distribution of
EGFR-AS1 and MIR205HG expression in gefitinib or erlotinib resistant (AUC > 0.9) or sensitive (AUC < 0.9) cell lines. (D) Hazard ratios obtained from Cox-
proportional hazard models for overall survival of TCGA LUAD patients based on EGFR mutation status or elevated expression levels of the EGFR, EGFR-AS1,
or MIR205HG genes.
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order of magnitude as EGFR mutation status (SI Appendix, Fig.
S4 E and F).
We next evaluated the impact of the candidate lncRNA bio-

markers on patient survival outcomes, in comparison with EGFR
mutation status. As expected in the TCGA LUAD cohort, the
presence of EGFR secondary resistance mutation (T790M) or
high EGFR expression were both associated with worse overall
prognosis (Fig. 4D). In contrast, the elevated expression of
MIR205HG and EGFR-AS1 were associated with reduced risk of
lung cancer death, a trend similar to the presence of EGFR-
activating mutations (Fig. 4D). These results are consistent in
the directionality suggested by our analysis, that is, the expres-
sion of both EGFR-AS1 and MIR205HG are indicative of im-
proved sensitivity and better prognosis. Thus, further inquiry into
the prognostic value of MIR205HG and EGFR-AS1 for anti-
EGFR therapeutics will be crucial.

Determining lncRNA-Specific Genomic Alterations Associated with
Drug Response. The majority of the mutation profiles utilized in
existing cancer pharmacogenomic studies were generated using
exome sequencing. As a result, the impact of somatic variants
that specifically affect the lncRNA genome has largely remained

unexplored. The study of lncRNA variants is complicated by the
lack of a clear definition of “passenger” and “driver” noncoding
mutations. Two recent efforts attempted to identify driver
lncRNA mutations that were positively selected in human can-
cers (31, 32). In some form, each method identified noncoding
loci or noncoding genes that were mutated at a frequency sig-
nificantly greater than the background rate across all noncoding
loci or across samples, respectively. We adopted a similar frame-
work to define positively selected lncRNA-specific somatic vari-
ants using whole-genome sequencing data from about 1,000
catalogs of somatic mutations in cancer (COSMIC) cell lines (11).
We excluded all genic noncoding variants (intron, promoter, or
untranslated regions of PCGs) and identified lncRNA genes with
mutation frequencies greater than the length-adjusted background
noncoding mutation frequency.
We analyzed drug response as a function of the mutation

status of each candidate lncRNA (Fig. 5A and SI Appendix, Fig.
S5 A and B). In contrast with lncRNA expression, only a small
set of lncRNA mutations undergoing positive selection were
associated with drug response (Fig. 5 A, Inset and SI Appendix,
Fig. S5 C and D). In the case of drugs with actionable PCG
biomarkers, we found drugs with a similar mechanism of actions

Fig. 5. lncRNA-specific somatic variations and association with drug response. (A) Volcano plot of drug–lncRNA associations based on somatic mutations in
lncRNA genes, with the size of points scaled according to the frequency of mutations across all cell lines. Nominal P value thresholds are indicated by the
horizontal dashed gray lines. (Inset) Volcano plot shows lncRNAs satisfying the statistical threshold for positive selection in the COSMIC cell lines. Significant
associations above the nominal threshold for drugs with clinically actionable PCG biomarkers are indicated with pink markers. (B, Left) Chromosomal locus of
the candidate lncRNA and frequency of noncoding variants identified in the COSMIC cancer cell lines. The exon structure of the proximal PCGs (green) and
lncRNAs (blue) are displayed below the variants. (Right) The P-value distribution of the lncRNAs associated with erlotinib and gefitinib sensitivity. (C–E)
Examples of lncRNAs with mutation frequencies above the statistical threshold for positive selection in the COSMIC cell lines, with the left showing frequency
of noncoding variants and exon structure of proximal genes, and the right showing the comparison of drug AUC in wild-type or mutant cell lines.
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tend to share the top lncRNA mutation predictors (Fig. 5A). For
example, AC007405.1 (ENSG00000234350) was the top lncRNA
associated with sensitivity to both erlotinib and gefitinib (Fig.
5B), suggesting a possible functional link between these lncRNA
loci and the mechanism of action of the drugs.
We next determined associations for the lncRNAs with so-

matic mutation frequencies above the statistical threshold for
positive selection (Fig. 5 A, Inset). As an example, the intergenic
lncRNA BX284668.2 (ENSG00000228549) (P = 3.8 × 10−18) was
associated with sensitivity to the PI3K inhibitor ZSTK-474 (P =
1 × 10−4) (Fig. 5C). Similarly, mutations in the glucuronidase
beta pseudogene 2 (ENSG00000241549) (P = 1.8 × 10−10) were
linked with resistance to the CDK inhibitor indisulam (P = 5 ×
10−4) (Fig. 5D). Additionally, mutations in the programmed cell
death 6 interacting protein pseudogene 2 (ENSG00000261377)
were determined as positively selected in the COSMIC cell lines
(P = 1.1 × 10−12) and predicted sensitivity to the MDM2 an-
tagonist JNJ-26854165 (P = 0.001) (Fig. 5E). While the biolog-
ical function of these lncRNAs is virtually unknown, these
examples focusing on lncRNAs undergoing positive selection in
cancer cells hint at the existence of PCG-independent associa-
tions between somatic alterations in the lncRNA genome and

drug sensitivity. At the very least, it is clear that further studies
are warranted to characterize the function of somatic lncRNAs
variants and study their associations with anticancer drug
response.

Experimental Validation of the Influence of EGFR-AS1 and MIR205HG
Expression on Erlotinib Response in Lung Cancer Cells. We de-
termined the correlation between EGFR-AS1 and MIR205HG
expression with erlotinib response in a cohort of 16 lung cancer
cell lines (SI Appendix, Fig. S6A). As expected, the cell lines with
EGFR-activating mutations (exon 19 deletions) including HCC
4006, HCC 2935, and HCC 827, were most responsive to erlotinib
treatment (Fig. 6A). Our experiments yielded similar results as
observed in the cancer cell line screens, with higher expression of
both lncRNA transcripts associated with increased sensitivity to
erlotinib (EGFR-AS1 PCC = −0.34, MIR205HG PCC = −0.29)
(Fig. 6A).
Next, we measured the expression of the 2 lncRNAs in 2

erlotinib-resistant lines generated from erlotinib-sensitive pa-
rental lines (HCC 4006 and HCC 827) carrying EGFR-activating
mutations (Fig. 6B). The expression levels of EGFR-AS1 were
about 50 to 60% lower in the resistant lines as compared to the

Fig. 6. In vitro validation of EGFR-AS1 and MIR205HG as determinants of erlotinib response. (A) Scatter plots showing expression levels of EGFR-AS1 and
MIR205HG along with erlotinib response (AUC) for 16 lung cancer cell lines labeled on the plot. Cell lines carrying EGFR-activating mutations (L858R, exon
19 del) are encircled in blue, while lines with resistance mutation (T790M) are encircled in red. The dashed gray line indicates a linear fit. (B) Comparison of
relative EGFR-AS1 and MIR205HG expression levels in 2 EGFR-responsive cell lines––HCC 4006 and HCC 827. Violet bars indicate expression levels in parental
lines, while blue bars indicate expression levels in derived, erlotinib-resistant, lines. (C) Barplots indicating the growth of NCI H2228 and HCC 827 cells upon
ASO-mediated k.d. of EGFR-AS1 or MIR205HG over a period of 72 h post-k.d. (D) Effect of ASO-mediated EGFR-AS1 or MIR205HG k.d. on erlotinib response
determined as proliferation rate relative to untreated NCI H2228 and HCC 827 cells measured over a period of 72 h. (E) The ratio of relative expression levels
of EGFR Isoform A: Isoform D in NCI H2228 and HCC 827 cells with ASO-mediated EGFR-AS1 or MIR205HG k.d. (F) Schematic of the proposed lncRNA-driven
pathway that determines response to erlotinib in the presence (Left) or absence (Right) of EGFR-AS1 and MIR205HG-mediated regulation of EGFR isoforms.
**P < 0.01, ***P < 0.001; n.s., not significant.
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parental HCC 4006 and HCC 827 cell lines (both P < 0.01).
Similarly, MIR205HG expression levels were 60 to 90% lower in
the resistant lines (HCC 4006 P < 0.01; HCC 827 P < 0.001).
Based on these results, we hypothesized that these 2 lncRNAs
have a functional influence on erlotinib response and do not
merely serve as predictive biomarkers.
To confirm their functional impact, we performed anti-sense

oligonucleotide (ASO) mediated knockdown (k.d.) of EGFR-AS1
and MIR205HG in 2 cell lines with different levels of erlotinib
sensitivity – HCC 827 (strong response) and NCI H2228 (weak
response) (SI Appendix, Fig. S6 B and C). The k.d. of either
transcripts resulted in a reduction in the growth of the 2 cell lines
over time, with significantly slower growth observed at 48 and
72 h (Fig. 6C). However, in the presence of erlotinib, the rates
of proliferation were elevated in both the EGFR-AS1 and
MIR205HG k.d. cell lines as compared to control (Fig. 6D).
These results corroborate the outcome of our analyses and hint
at a possible functional impact of the 2 lncRNAs on erlotinib
response.
To further investigate its functional role, we investigated the

relative expression levels of 2 EGFR isoforms that were recently
described as regulatory targets of EGFR-AS1 (33). The relative
ratio of these isoforms could affect the ligand-dependent acti-
vation of the EGFR signaling pathway (34). The product of
EGFR transcript 1 (ENST00000275493.6 or NM_005228.5)
translates into the full-length Isoform A of the protein while
transcript variant 4 (ENST00000344576.6 or NM_201284.1)
translates into the truncated Isoform D of the protein. Only the
extracellular domain is present in the shorter isoform and
lacks the tyrosine kinase domain. Thus, abundant expression
Isoform D may act as an antagonist of ligand-dependent EGFR
action.
In the EGFR-AS1 and MIR205HG k.d. cell lines, the expres-

sion levels of the consensus EGFR sequence were not signifi-
cantly altered (SI Appendix, Fig. S6D). While the Isoform A
levels were lower, the reduction was not statistically significant in
either lncRNA k.d. in each cell line (SI Appendix, Fig. S6E). The
expression levels of Isoform D were elevated in both EGFR-
AS1 and MIR205HG k.d. cell lines, but were significant only
in HCC 827 cells (SI Appendix, Fig. S6F). However, upon con-
sidering the ratios of Isoform A to Isoform D, we found a sig-
nificant reduction in the relative abundance of the 2 isoforms in
both NCI H2228 (EGFR-AS1 k.d. P = 1 × 10−4; MIR205HG k.d.
P = 1.6 × 10−3) and HCC 827 (EGFR-AS1 k.d. P = 1.6 × 10−6;
MIR205HG k.d. P = 3.8 × 10−7) cells (Fig. 6E). These results
indicate a reduction in ligand-dependent growth of the cells and,
consequently, reduced impact of erlotinib on the cell lines with
lncRNA k.d. (Fig. 6F). It is interesting to note that the
MIR205HG k.d. also resulted in a similar phenotypic impact as
EGFR-AS1 k.d. along with reduced Isoform A:D ratio. Moreover,
we observed a significant reduction in MIR205HG expression in
the EGFR-AS1 k.d. cells, hinting at a possible mediatory role of
MIR205HG that calls for further investigation.

Discussion
Although representing over 80% of the human transcriptome,
the pharmacogenomic relevance of lncRNAs in drug response is
largely unknown. This gap in knowledge motivated us to com-
prehensively study the lncRNA transcriptome and genome to
determine their relevance in cancer pharmacogenomics. Recent
large-scale drug screening efforts (9–13) generated invaluable
response data for hundreds of drugs measured across over
1,000 cell lines, along with exome sequencing and PCG expres-
sion data. We leveraged these datasets to perform an in-depth
analysis of the relationship among the lncRNA transcriptome,
genome, and response to drugs. Previously, expression and so-
matic alterations of PCGs were successfully utilized to predict
drug response using various machine-learning approaches (35).

From the early drug screens and subsequent prediction efforts, it
is clear that the tissue lineage of cancer cell lines has a strong
confounding effect on the drug response prediction models
(10). Considering the tissue-specific expression patterns of
lncRNAs (36), we emphasized the inclusion of tissue type of the
cell lines as a covariate in all of our analyses. Moreover, we
addressed the unique challenge of identifying drug-response-
related lncRNAs that are independent of the effects of proxi-
mal cis-PCGs and well-established PCG biomarkers. Together
with confounding effects of tissue type, adjusting for effects of cis-
PCGs or known biomarkers is of critical importance in determining
potential lncRNA biomarkers. These factors were not taken into
account in previous attempts at predicting drug response using
lncRNAs (17).
In this study, we first analyzed over 3.3 million drug–lncRNA

expression associations in the CTRP screen and about 2.3 mil-
lion associations in the GDSC screen. We determined a large
proportion of significant drug–lncRNA associations overlapped
in the 2 independent screens. Furthermore, we hypothesized
and validated that the lncRNA transcriptome could effectively
predict drug response with equal efficacy as PCGs in both
screens.
The physical proximity of a portion of lncRNAs to PCGs and

redundant expression patterns raise concerns whether lncRNAs
actually provide any additional information. We addressed this
important concern by carefully accounting for the possible ef-
fects of neighboring PCGs. The choice of ±500-Kb boundary
that defined cis-PCGs in our study was based on the definition of
cis-eQTLs from the genotype tissue expression project (37).
Based on this conditional analysis, we determined about half
of the initially observed drug–lncRNA associations were re-
dundant with cis-PCG expression. However, for most drugs, the
genomic loci for the top lncRNA biomarker do not overlap with
the PCGs, including for the drugs with established clinical
biomarkers.
Among the known oncogenic and tumor suppressor lncRNAs,

we found intriguing associations between GAS5 and ZEB2AS1
expression with >50 drugs in both GDSC and CTRP. The GAS5
(growth arrest-specific 5) lncRNA acts as a tumor suppressor
with various proposed mechanisms of action, including, cell cycle
control (38–40), proliferation (41, 42), and regulation of epi-
thelial to mesenchymal transition (EMT) program (43). Con-
sidering the multifaceted mechanisms by which GAS5 functions
as a tumor suppressor, it is plausible that its expression may be
predictive of response to multiple drugs. In contrast, from what
we know so far about ZEB2AS1, it appears this transcript up-
regulates ZEB2 expression to induce EMT program in cancer
cells (43, 44). One possible mechanism could be the expression
of this transcript is indicative of aggressive cancer cells that
generally show a better response to drugs in vitro. Nevertheless,
both lncRNAs are candidates for experimental validation as
multidrug response prediction biomarkers.
In addition to the lncRNA transcriptome, we study the asso-

ciations between somatic alterations in the lncRNA region and
drug response. Currently, there are no gold standards to distin-
guish driver vs. passenger noncoding somatic variants. Unlike
PCGs, noncoding variants cannot be classified as synonymous or
nonsynonymous, which complicates identification of relevant
variants. We attempted to identify lncRNA variants that did not
overlap with any PCGs and were positively selected in the cell
lines based on the total background noncoding mutation fre-
quency and lncRNA mutation frequency across all cell lines.
While preliminary, the emergence of significant somatic lncRNA
associations with drug-response warrants future studies focusing
on elucidating the biological role of such variants.
In clinical practice, a handful of somatic variants are routinely

profiled to guide treatment decisions in cancer patients (23).
Among these, somatic mutations that activate EGFR activity and
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their impact on anti-EGFR therapeutics like erlotinib and gefi-
tinib are some of the first and extensively studied clinically ac-
tionable biomarkers (45). An important consideration in identifying
novel lncRNA biomarkers is accounting for such well-known
PCG somatic alterations to prevent redundancy. In this direction,
we identified and characterized the impact of 2 lncRNAs, EGFR-
AS1 and MIR205HG, which are strong predictors of response to
erlotinib and gefitinib independent of EGFR somatic mutation
status. A recent study proposed the theory that EGFR-AS1 stabilizes
the EGFR signaling pathway by influencing the transcript ratio
of the full-length EGFR Isoform A to the truncated Isoform D
(33). Our results lend support to this idea, demonstrating the
effect of EGFR-AS1 k.d. on the ratio of the 2 isoforms. More-
over, we reported a shift in both the growth pattern and erlotinib
sensitivity of cell lines upon EGFR-AS1 k.d. confirming the
functional impact of this lncRNA on addiction to ligand-dependent
EGFR signaling. The MIR205HG lncRNA undergoes post-
transcriptional processing leading to the synthesis of miRNA-
205. Several studies have focused on the functions of this
miRNA; however, its mechanism of action remains conflicting,
with both oncogenic and tumor suppressor activities proposed
(46, 47). Similar to EGFR-AS1, the k.d. of MIR205HG also
resulted in a change in EGFR isoform ratio and phenotypic
outcome. Additionally, MIR205HG expression levels were af-
fected by EGFR-AS1 k.d., suggesting this gene could be an
intermediator in EGFR isoform regulation. While miRNA-

205 does not bind and regulate EGFR expression directly, it
could modulate secondary transcriptional repressors that reg-
ulate the expression of the transcripts (48) (Fig. 6F). Besides an
intriguing functional link with EGFR signaling, the expression
of these 2 lncRNAs could predict response in patients who do
not carry known activating EGFR mutations and thus are strong
candidates for clinical evaluation.
We are still in the early stages of understanding the biology of

lncRNAs, although sufficient evidence points toward the di-
rection of altered lncRNA’s involvement in human cancers. By
comprehensively analyzing the associations between lncRNA
transcriptome, genome, and drug response, we have shown that
lncRNAs are indeed biomarkers of drug response. Furthermore,
we have provided compelling evidence that these associations
are not just dependent on the correlative structure with PCGs.
Future studies focusing on the mechanism of lncRNA action
would be invaluable in improving our understanding of cancer
progression and drug response.

Materials and Methods
Materials and methods are detailed in SI Appendix.
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